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Abstract—We present an iterative refinement module that can
be applied to the output feature maps of any existing convolu-
tional neural networks in order to further improve classification
accuracy. The proposed module, implemented by an attention-
based recurrent neural network, can iteratively use its previous
predictions to update attention and thereafter refine current
predictions. In this way, the model is able to focus on a sub-
region of input images to distinguish visually similar characters
(see Figure 1 for an example). We evaluate its effectiveness on
handwritten Chinese character recognition (HCCR) task and
observe significant performance gain. HCCR task is challenging
due to large number of classes and small differences between
certain characters. To overcome these difficulties, we further
propose a novel convolutional architecture that utilizes both low-
level visual cues and high-level structural information. Together
with the proposed iterative refinement module, our approach
achieves an accuracy of 97.37%, outperforming previous methods
that use raw images as input on ICDAR-2013 dataset [1].

I. INTRODUCTION

Handwritten Chinese character recognition (HCCR) has
been a long-standing research problem. A successful HCCR
module can support various practical systems such as mail
sorting, paycheck processing, documents digitalization and
retrieval. The main difficulties for existing approaches include
a large number of class labels (e.g. an educated Chinese knows
6000 to 8000 characters [2]), mispredictions between visually
similar characters (such as “已” which means “already” and
“己” which means “self”), and distinct handwriting styles
across individuals.

Depending on the representation of the input data, HCCR
problem can be further categorized into two sub-problems: 1)
online HCCR, where input characters are represented by the
trajectories of pen tip movements; and 2) offline HCCR, where
images containing isolated character are the input. This work
focuses on improving the second, since for many applications
(e.g. mail sorting) pen trajectories are not available.

Early work on offline HCCR often relies on hand-crafted
features, while recent advances in deep convolutional neural
networks (CNN) [3] enable direct learning of visual represen-
tations from raw data which has led to state-of-the-art results.
However, it is still difficult to distinguish certain characters
from those that are visually similar. For this we have created
an iterative refinement module that takes as input the feature
maps learned by a convolutional neural network. The iterative
refinement module is implemented with an attention-based
recurrent neural network (RNN) [4], [5]. Given an input
image x depicting a single handwritten Chinese character, we

Fig. 1. Two handwritten Chinese characters that look very similar to each
other. The major difference is shown in the red circle of the input images.
The visualized attention maps are explained in Section III-A.

first learn a convolutional visual representation V (x), then
apply the iterative refinement module to obtain an initial
prediction y1. Here yt (t = 1, 2, · · · , T ) is a vocabulary-
sized vector representing the probability of yielding each
character. Based on y1, the module is expected to concentrate
its attention on a sub-region of V (x) that is hypothetically
more informative to distinguish visually similar characters (see
Figure 1). Consequently, a refined prediction y2 is outputted.
The aforementioned process can repeat T times until we are
satisfied with the last prediction. The intuition behind is that
instead of trying to solve a complicated classification problem
in one shot, we decompose the problem using a coarse-to-
refined approach.

Figure 1 shows two Chinese characters that can be easily
confused for each other. As shown, the attention (learned by
our model) used for outputting y1 is roughly evenly spread,
while that used for outputting y2 is concentrated on the
circled region. Therefore, the model is more likely to tell the
difference between these two characters.

As both low-level visual cues (e.g. small strokes) and high-
level structural knowledge are beneficial for HCCR task, we
propose a novel convolutional architecture to utilize a hier-
archy of visual representations. It adopts residual blocks [6]
to facilitate training deep networks and shortcut connections
to aggregate multi-scale information. Therefore the proposed
architecture is termed as multi-scale residual block cascade.
Figure 2 illustrates the pipeline of our model while Figure 4



Fig. 2. The proposed model consists of two parts: 1) a multi-scale residual block cascade that learns a hierarchy of visual features from the input image; and
2) an iterative refinement module that iteratively updates attentions and refines current predictions. y0 is set as a uniform distribution while the most likely
character from the last refined prediction yT is the model’s final output.

shows the architecture of the multi-scale residual block cas-
cade.

The proposed method is evaluated on the ICDAR-2013
offline HCCR dataset [1], which contains 224,419 test im-
ages covering 3,755 frequently used Chinese characters. Our
method achieves a prediction accuracy of 97.37%, outper-
forming existing methods that use raw images as input. The
DirectMap+ConvNet+Adaption method [7] achieved the same
accuracy, however it requires a time-consuming pre-processing
step while our method can be directly applied on raw images.
Overall our method is about 4 times faster than [7]. The
contributions of our work can be summarized as follows:

• We present an iterative refinement module which can be
trained with a convolutional neural network in an end-to-
end manner. It is shown in experiments that the proposed
module can robustly increase classification accuracy by
iteratively update attentions and predictions.

• We propose a novel convolutional architecture to utilize
both low-level visual cues and high-level information.
Together with the iterative refinement module, we achieve
an accuracy of 97.37% on ICDAR-2013 dataset, outper-
forming other methods that use raw images as input.

II. RELATED WORK

Handwritten Chinese Character Recognition: Based to
the types of input data, HCCR can be divided into online and
offline problems. For online HCCR, researchers often follow
a conventional pipeline where they first extract features from
the recorded sequence of coordinates, then apply classification
models to obtain predictions. For example, [8], [9] first de-
tected “key” coordinates that indicate changes in strokes (e.g.
corners and segment ends), then employed a nearest neighbor
classifier to match from a pre-defined template database. In
[10], [11], stroke types were first recognized using finite
state automaton, then fed into a nearest-neighbor based model
for classification. Recently, [12] proposed using an RNN to
simultaneously learn representations from raw sequence of

coordinates and perform classification, circumventing the need
for feature engineering.

Methods for online HCCR suffer from various stroke orders
and computational expensiveness when processing very long
sequences. For offline HCCR, these challenges no longer
exist. Early work on offline HCCR focus more on the design
of visual features for classification models. With the recent
success of deep CNN in vision tasks, a number of CNN-
based models have been proposed, leading to rapid improve-
ments in performance. In [13], a multi-column CNN model
was presented which ensembled multiple parallel networks to
enlarge model capacity. [14] proposed a spatially-sparse CNN
model to speedup training time for deeper networks. Despite
the different architectures in use, their models are still in the
form of a convolutional representation learning part followed
by a softmax classifier. Our model, on the other hand, replaces
the softmax classifier with an iterative refinement module to
iteratively update attentions and predictions. The proposed
module is general in the sense that it can be applied to the
output feature maps of any pre-trained CNN-based models to
further improve performance.

Knowledge Distillation: The proposed iterative refinement
module can be seen as an iterative version of knowledge
distillation, a concept introduce by Hinton et al. [15] in
2015. Hinton et al. attempted to train a small neural network
model by matching its class probabilities to the output of
an already trained large model, instead of the ground-truth
labels. In this way, the knowledge of the large model is
transfered to the small model which are more suitable for
deployment. The proposed iterative refinement module differs
from [15] in that it does not require a pre-trained large model
to “distill” knowledge. Instead, the module is self-guided:
it relies on its previous prediction to update attentions and
current prediction. Besides, the goal of the proposed module
is to boost performance, rather than to compress model size as
in [15]. Our work is loosely connected to sequential knowledge
distillation [16], which also proposed using an RNN to distill
knowledge for sequential predictions. In [16], a pre-trained



large model was used to predict next object (word) given
previous translated words for machine translation task. On
the contrary, our module iteratively refine the prediction of
the same object (character), without any pre-trained external
models.

III. METHOD

This section describes the details of our handwritten Chinese
character recognition model. Overall, it takes as input an image
x depicting an isolated character, and outputs the prediction
C.

As shown in Figure 2, our model consists of two parts:
1) a multi-scale residual block cascade (M-RBC) that learns
a hierarchy of visual features, and 2) an iterative refinement
(IR) module implemented by an attention-based RNN that
repeatedly refine predictions. Section III-A describes the for-
mulation of the iterative refinement module while Section III-B
describes in detail the architecture of the multi-scale residual
block cascade.

A. Iterative Refinement Module

Concretely, assume we have a visual representation V (x)
which is a set of K-dimensional vectors (K denotes the
number of channels) learned from x using a convolutional
representation learning module, and a previous prediction
yt−1 which is a vocabulary-sized vector. Then, the refined
prediction yt can be calculated by:

yt = IR(V (x), yt−1) (1)

This process repeats T times and the last predicted character
ĈT = argmax(yT ) will be announced as the model’s final
output. y0 is set to a uniform distribution.

A usual deep CNN-based model for classification is equiv-
alent to the case where the iterative refinement module is
implemented by a feed-forward neural network (e.g. a multi-
layer perceptron (MLP)) and T is set to 1:

y1 = MLP(V (x), y0) (2)

In this case, since y0 is an input-independent uniform
distribution, it does not convey any information. When T is
larger than 1, the iterative refinement module is in the form
of a recurrent neural network. With inspiration from the atten-
tion mechanism of human vision system, we implement the
iterative refinement module with an attention-based recurrent
neural network. Therefore, the module is able to focus on a
sub-region of V (x). Formally, we decompose Equation 1 into
two steps. First, a context vector ctxt which is a dynamic
representation of the relevant region is learned based on V (x)
and yt−1:

ctxt = fatt(V (x), yt−1) (3)

where fatt is an attention model. Then, we compute the refined
prediction yt using a recurrent neural network:

yt = RNN(ctxt, yt−1) (4)

Fig. 3. A convolutional residual block where the operator ⊕ denotes element-
wise addition. Each convolution layer has a kernel size of 3×3 and is followed
by a Batch Normalization [18] layer, which for brevity is omitted here.

Multiple choices exist for the attention model fatt such
as “hard” attention and “soft” attention [17]. Here we adopt
the “soft” attention mechanism where context vector ctxt is
defined as the weighted sum of the learned features V (x):

ctxt =
N∑

n=1

αn
t V

n(x) (5)

where V n(x) is one of the K-dimensional vectors in visual
representation V (x):

V (x) = {V 1(x), V 2(x), · · · , V N (x)} (6)

V n(x) ∈ RK , |V (x)| = N (7)

and weight αn
t for V n(x) can be computed by:

αn
t =

exp(ent )∑N
i=1 exp(eit)

(8)

Here the alignment score ent indicates how relevant V n(x) is
to the prediction yt. Following Bahdanau et al. [5], we model
ent with a single layer perceptron (SLP) such that:

ent = SLP(yt−1, V
n(x)) (9)

= vᵀTanh(Wyt−1 + UV n(x)) (10)

with v, W and U being weight matrices to be learned.
It has been observed by [19] that training a plain recurrent

neural network is difficult owning to the gradient vanishing
or exploding issue during back-propagation. To overcome
this, we adopt a variant of recurrent neural network: Gated
Recurrent Unit (GRU) [20] to implement the proposed itera-
tive refinement module. GRU contains two gating units that
modulate the flow of information: a reset gate r, and a update
gate z. Intuitively, r determines how to incorporate the new
input with the previous state, while z controls how much of
the previous states to keep around. The hidden state yt at time-
step t is therefore computed as follows:

r = σ(xtWr + yt−1Ur) (11)
z = σ(xtWz + yt−1Uz) (12)
ŷ = Tanh(xtWŷ + (yt−1 ◦ r)Uŷ) (13)
yt = (1− z) ◦ ŷ + z ◦ yt−1 (14)



Fig. 4. The proposed multi-scale residual block cascade contains 6 residual blocks and 2 Max-pooling layers whose pooling size is 2× 2. The operator �
denotes aggregation among activations at different scales (see Equation 16).

with σ being a sigmoid function and ◦ being the element-
wise multiplication. Here xt is the input at time-step t and
Wr, Ur,Wz, Uz,Wŷ, Uŷ are weight matrices to be learned.
Consequently, Equation 4 can be rewritten as

yt = GRU(ctxt, yt−1) (15)

B. Multi-scale Residual Block Cascade

Convolutional neural networks have seen a gradual increase
of the number of layers in the past few year, together with
remarkable improvements in many computer vision tasks
such as object recognition. In spite of superiority of deep
architectures in representation learning, training deep neural
networks suffers from several challenges including gradient
vanishing or exploding. To overcome these difficulties, various
solutions have been proposed such as layer-by-layer pre-
training [21], different parameter initialization strategies [22],
and new optimization methods [23], [24].

He et al. [6] proposed residual blocks to enable training
of very deep neural networks and achieved a large success
in ImageNet [25] competition. Figure 3 shows the structure
of a residual block. The intuition is that instead of attempt-
ing to fit a desired underlying mapping function H(x), it
is hypothetically easier to fit a residual mapping function
F(x) = H(x) − x. Therefore, the desired mapping can be
rewritten as H(x) = F(x) + x.

We also adopt residual blocks in our convolutional rep-
resentation learning part to facilitate training. However, for
handwritten Chinese character recognition task, we observe
that both low-level visual cues (e.g. small strokes as shown in
Figure 1) and high-level structural knowledge are necessary
for successful predictions. This is contrary to normal object
recognition task such as that in ImageNet [25] competition
where highly semantic information is the primary concern.
Therefore, we introduce shortcut connections that aggregate
activations of “lower” layers with those of “higher” layers.
Formally, for activation ai and aj that have the same number
of channels K but different height and width, the aggregation
operation � is defined as the union of feature vectors:

ai � aj
.
= {ami } ∪ {anj } (16)

m = 1, 2, · · · , HiWi, n = 1, 2, · · · , HjWj (17)

where Hi, Wi, Hj , Wj are the height and width of the
corresponding activations. In this way, information at different
scales can be utilized.

Figure 4 illustrates the architecture of the multi-scale resid-
ual block cascade. Assume the output activations of each
building block i in Figure 4 is named as ai sequentially, then
the learned visual representation V (x) = a2�a5�a8 will be
fed into our iterative refinement module.

IV. EXPERIMENTS

In this section, we systematically investigate the effective-
ness of the proposed multi-scale residual block cascade and
iterative refinement module. Our model is trained on CASIA-
HWDB1.0 [26] and CASIA-HWDB1.1 [26] training set and
evaluated on ICDAR-2013 [1] dataset.

A. Datasets

CASIA-HWDB1.0 collected 1.6 million handwritten Chi-
nese character samples from 420 persons. Each person wrote
4,037 characters. It contains 3,866 Chinese characters as well
as 171 alphanumeric and symbols. Among the 3,866 Chinese
characters, 3,740 characters are in the key official character
set GB2312-80 level-1 [30] which includes 3,755 characters
in total.

CASIA-HWDB1.1 collected 1.2 million handwritten Chi-
nese character samples from 300 persons. Each person wrote
3,755 characters that are from GB2312-80 level-1 set [30].

ICDAR-2013 was the evaluation dataset for ICDAR 2013
Chinese Handwriting Recognition Competition. It contains
3,755 handwritten Chinese characters collected from 60 per-
sons who did not contribute to CASIA-HWDB datasets. The
total number of samples is 224,419.

B. Implementation Details

The architecture of our multi-scale residual block cascade
is shown in Figure 4. Each convolution layer has a kernel
size of 3 × 3 and a stride size of 1 × 1, followed by a
Batch Normalization [18] layer and a Rectify Linear Unit
(ReLU). Max-pooling size is 2 × 2. The proposed iterative
refinement module is implemented with an attention-based
GRU whose hidden size is 512. The maximum iteration T is
set to 4 empirically. Larger T did not show any significant
performance gain so we set T = 4 to save computation
cost. The proposed model is trained in an end-to-end fashion
using stochastic gradient decent with a momentum of 0.9. The
learning rate is initially set to 0.001 and decreases by half for
every epoch.



TABLE I
ACCURACIES FOR DIFFERENT METHODS FOR HANDWRITTEN CHINESE CHARACTER RECOGNITION FOR THE ICDAR-2013 DATASET. ALL ARE TRAINED
ON THE CASIA-HWDB1.0 AND CASIA-HWDB1.1 DATASETS. “PREPROCESSING” INDICATES WHETHER RAW IMAGES OR MANUALLY PREPROCESSED

SAMPLES ARE USED AS INPUT. IF ENSEMBLE LEARNING STRATEGY IS USED, THE NUMBER OF MODELS IN THE ENSEMBLE IS LISTED IN THE
PARENTHESES. NOTE THAT [7] RELIES ON A TIME-CONSUMING PREPROCESSING STEP (SEE SECTION IV-E).

Method Accuracy (%) Training data Preprocessing Ensemble
Human Performance [1] 96.13 - - -
DFE-DLQDF [27] 92.72 1.0 + 1.1 No No
HKU [28] 89.99 1.0 + 1.1 No No
Gabor+HCCR-GoogLeNet [29] 96.35 1.0 + 1.1 No No
HCCR-Ensemble-GoogLeNet(4) [29] 96.64 1.0 + 1.1 No Yes(4)
HCCR-Ensemble-GoogLeNet(10) [29] 96.74 1.0 + 1.1 No Yes(10)
Our ConvNet 95.97 1.0 + 1.1 No No
Our ResNet 96.34 1.0 + 1.1 No No
Our M-RBC 96.84 1.0 + 1.1 No No
Our ConvNet + IR 96.64 1.0 + 1.1 No No
Our ResNet + IR 97.04 1.0 + 1.1 No No
Our M-RBC + IR 97.37 1.0 + 1.1 No No
DirectMap + ConvNet [7] 96.95 1.0 + 1.1 Yes No
DirectMap + ConvNet + Adaptation [7] 97.37 1.0 + 1.1 Yes No
DirectMap + ConvNet + Ensemble [7] 97.07 1.0 + 1.1 Yes Yes(2)
DirectMap + ConvNet + Ensemble [7] 97.12 1.0 + 1.1 Yes Yes(3)

C. Effectiveness of the Multi-scale Residual Block Cascade

In this section, we compare the proposed multi-scale resid-
ual block cascade with a vanilla CNN similar to that in
Zhang et al. [7] and a regular residual network. The vanilla
CNN contains 12 convolutional layers. A fully connected
layer is stacked on top the convolutional part to output final
predictions. The regular residual network shares same archi-
tecture as our multi-scale residual block cascade as shown in
Figure 4, except that the shortcut connections are removed. For
both the regular residual network and our multi-scale residual
block cascade, a fully connected layer is further applied for
classification purpose. Note that despite their differences in
architectures, all these three models contain 12 convolutional
layers and 1 fully connected layer.

From Table I we can see that the vanilla CNN (denoted
as Our ConvNet) and the regular residual network (denoted
as Our ResNet) achieves an accuracy of 95.97% and 96.34%
respectively, while the proposed multi-scale residual block
cascade (denoted as Our M-RBC) achieves a highest accuracy
of 96.84%. We can conclude that adding residual blocks leads
to a more effective model learning. The proposed multi-scale
residual block cascade yields slightly better results than the
regular residual network, suggesting the advantages of utilizing
low level features for HCCR task.

D. Effectiveness of the Iterative Refinement Module

From Table I we can see that, adding an iterative refinement
module leads to performance boosts of 0.67%, 0.70% and
0.53% in accuracy for the vanilla CNN, the regular residual
network and the proposed multi-scale residual block cascade,
respectively. Taking into consideration the large size of the
test dataset, such level of boosts means that we can correctly
recognize 1503, 1570 and 1189 more test images, respectively.
Since we did not find any publicly available pre-trained models
for previous methods, it is difficult to investigate how well
those models can be improved by our iterative refinement

module. However, the results above suggest that the iterative
refinement module can provide extra performance gain after
being incorporated into an existing CNN-based model.

Figure 5 shows several examples where the proposed it-
erative refinement module repeatedly updates predictions and
finally yields correct class labels. As we can see, although the
model makes wrong predictions at an initial attempt, it is able
to correct itself. While the attentions at each time-step are not
shown due to space constrain, we do observe that the attentions
are shifted to sub-regions that can are more informative to
differentiate groundtruth characters from others.

E. Comparisons with State-of-the-art Methods

In this section, we compare our approach with other
state-of-the-art methods. As shown in Table I, Our M-RBC
method outperforms all other methods that use raw images
as input, showing the superiority of using residual blocks
with multi-scale shortcuts. After incorporating the iterative
refinement module, both Our ResNet+IR and Our M-RBC+IR
can achieve higher classification accuracies compared with
other methods that do not rely on preprocessing. The Di-
rectMap+ConvNet+Adaptation method ties Our M-RBC+IR
method and also achieves an accuracy of 97.37%. However,
their method requires shape normalization [31] and direction
decomposition [32] to obtain a 8-channel DirectMap during
testing. Such kinds of pre-processing steps are very time-
consuming. For example, in [7] it takes 1.997 ms to calculate
DirectMap and 0.464 ms to perform a forward pass of a
deep CNN for each image. In total it takes 2.461 ms. On
the contrary, Our M-RBC+IR directly processes raw images
and takes 0.623 ms for each image1, four times faster than the
DirectMap+ConvNet+Adaptation method.

1Using a Nvidia K40 GPU.



Fig. 5. Examples where the iterative refinement module repeatedly updates its
predictions and finally outputs the correct characters. At each time-step t, the
top 5 predictions are listed. Each character is followed by the corresponding
probability. Characters in red are the correct ones.

V. CONCLUSIONS

We have created an iterative refinement module that in-
creases the classification performance for deep convolutional
neural networks for handwritten Chinese character recognition
(HCCR) task. The iterative refinement module is implemented
with an attention-based recurrent neural network, that iter-
atively uses its previous prediction to update attention and
to refine current predictions. A multi-scale residual block
cascade that utilizes both low-level visual cues and high-level
structural information was specifically designed for HCCR
task. Together with the iterative refinement module, we achieve
state-of-the-art results on ICDAR-2013 dataset. The proposed
model is completely end-to-end, avoiding any pre-processing
or post-processing steps. A future direction would be to
investigate the effectiveness of the iterative refinement module
for other vision tasks such as object recognition.

ACKNOWLEDGMENTS

We gratefully acknowledge partial support from NSF grant
CCF 1317560 and a hardware grant from NVIDIA.

REFERENCES

[1] F. Yin, Q.-F. Wang, X.-Y. Zhang, and C.-L. Liu, “Icdar 2013 chinese
handwriting recognition competition,” in Document Analysis and Recog-
nition (ICDAR), 2013 12th International Conference on. IEEE, 2013,
pp. 1464–1470.

[2] N. Jiang, Advances in Chinese as a second language: Acquisition and
processing. Cambridge Scholars Publishing, 2014.

[3] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel, “Handwritten digit recognition with a back-propagation
network, 1989,” in Neural Information Processing Systems (NIPS).

[4] S. El Hihi and Y. Bengio, “Hierarchical recurrent neural networks for
long-term dependencies.” in Neural Information Processing Systems
(NIPS), vol. 409, 1995.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[7] X.-Y. Zhang, Y. Bengio, and C.-L. Liu, “Online and offline handwritten
chinese character recognition: A comprehensive study and new bench-
mark,” Pattern Recognition, vol. 61, pp. 348–360, 2017.

[8] W.-T. Chen and T.-R. Chou, “A hierarchical deformation model for on-
line cursive script recognition,” Pattern Recognition, vol. 27, no. 2, pp.
205–219, 1994.

[9] M. Kobayashi, S. Masaki, O. Miyamoto, Y. Nakagawa, Y. Komiya, and
T. Matsumoto, “Rav (reparameterized angle variations) algorithm for
online handwriting recognition,” IJDAR, vol. 3, no. 3, pp. 181–191,
2001.

[10] Y. Liu and J. Tai, “A structural approach to online chinese character
recognition,” in Pattern Recognition, 1988., 9th International Conference
on. IEEE, 1988, pp. 808–810.

[11] H. A. Rowley, M. Goyal, and J. Bennett, “The effect of large training
set sizes on online japanese kanji and english cursive recognizers,”
in Frontiers in Handwriting Recognition, 2002. Proceedings. Eighth
International Workshop on. IEEE, 2002.

[12] A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and S. Fernández,
“Unconstrained on-line handwriting recognition with recurrent neural
networks,” in NIPS, 2008, pp. 577–584.

[13] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in CVPR. IEEE, 2012, pp. 3642–
3649.

[14] B. Graham, “Spatially-sparse convolutional neural networks,” arXiv
preprint arXiv:1409.6070, 2014.

[15] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[16] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,” in
EMNLP, 2016, pp. 1317–1327.

[17] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention.” in ICML, vol. 14, 2015, pp. 77–81.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of The 32nd International Conference on Machine Learning, 2015, pp.
448–456.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[20] K. Cho, B. v. M. C. Gulcehre, D. Bahdanau, F. B. H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder–decoder
for statistical machine translation,” 2014.

[21] J. Schmidhuber, “Learning complex, extended sequences using the
principle of history compression,” Neural Computation, vol. 4, no. 2,
pp. 234–242, 1992.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in AISTATS, 2010.

[23] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning.” ICML
(3), vol. 28, pp. 1139–1147, 2013.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[26] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang, “Casia online and offline
chinese handwriting databases,” in Document Analysis and Recognition
(ICDAR), 2011 International Conference on. IEEE, 2011, pp. 37–41.

[27] C.-L. Liu, F. Yin, and D.-H. Wang, “Online and offline handwritten
chinese character recognition: benchmarking on new databases,” in
Pattern Recognition, 2013.

[28] C.-L. Liu, F. Yin, D.-H. Wang, Q.-F. Wang et al., “Chinese handwriting
recognition contest 2010,” 2010.

[29] Z. Zhong, L. Jin, and Z. Xie, “High performance offline handwritten
chinese character recognition using googlenet and directional feature
maps,” in Document Analysis and Recognition (ICDAR), 2015 13th
International Conference on. IEEE, 2015, pp. 846–850.

[30] https://en.wikipedia.org/wiki/GB 2312.
[31] C.-L. Liu and K. Marukawa, “Pseudo two-dimensional shape normal-

ization methods for handwritten chinese character recognition,” Pattern
Recognition, vol. 38, no. 12, pp. 2242–2255, 2005.

[32] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten
digit recognition: benchmarking of state-of-the-art techniques,” Pattern
recognition, vol. 36, no. 10, pp. 2271–2285, 2003.


